High Accurate NURBS Interpolation Algorithm Based on Runge-Kutta Method
نویسندگان
چکیده
منابع مشابه
Development of a CNC interpolation scheme for CNC controller based on Runge-Kutta method
Abstract: The parametric interpolators of modern CNC machines use Taylor’s series approximation to generate successive parameter values for the calculation of x, y, z coordinates of tool positions. In order to achieve greater accuracy, higher order derivatives are required at every sampling period which complicates the calculation for contours represented by NURBS curve. In addition, this metho...
متن کاملRunge-Kutta-Chebyshev projection method
In this paper a fully explicit, stabilized projection method called the Runge-Kutta-Chebyshev (RKC) Projection method is presented for the solution of incompressible Navier-Stokes systems. This method preserves the extended stability property of the RKC method for solving ODEs, and it requires only one projection per step. An additional projection on the time derivative of the velocity is perfo...
متن کاملHigh Order Runge { Kutta Methods on Manifolds
This paper presents a family of Runge{Kutta type integration schemes of arbitrarily high order for di erential equations evolving on manifolds. We prove that any classical Runge{Kutta method can be turned into an invariant method of the same order on a general homogeneous manifold, and present a family of algorithms that are relatively simple to implement.
متن کاملHigh Order Accurate Runge Kutta Nodal Discontinuous Galerkin Method for Numerical Solution of Linear Convection Equation
This paper deals with a high-order accurate Runge Kutta Discontinuous Galerkin (RKDG) method for the numerical solution of the wave equation, which is one of the simple case of a linear hyperbolic partial differential equation. Nodal DG method is used for a finite element space discretization in ‘x’ by discontinuous approximations. This method combines mainly two key ideas which are based on th...
متن کاملA Runge-Kutta based Discontinuous Galerkin Method with Time Accurate Local Time Stepping
An explicit one-step time discretization for discontinuous Galerkin schemes applied to advection-diffusion equations is presented. The main idea is based on a predictor corrector approach which was proposed in [1]. The interesting feature is that the predictor is local and takes only into account the time evolution of the data within each grid cell. In this paper, we focus ourselves to a contin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: DEStech Transactions on Engineering and Technology Research
سال: 2017
ISSN: 2475-885X
DOI: 10.12783/dtetr/icmeca2017/11908